Pitman Type Theorem for One-Dimensional Diffusion Processes
نویسندگان
چکیده
منابع مشابه
Sample Path Regularity for One-Dimensional for Diffusion Processes
1. Basic Assumptions. Assume that (i) {Tt} is a strongly-continuous semigroup of bounded linear operators on the Banach space B = C0(I) = { f continuous on I = [0, 1] : f(0) = f(1) = 0 } (ii) If f(x) ≥ 0 and f ∈ B, then Ttf(x) ≥ 0 and Ttf(x) ≤ maxy∈I f(y). In general, the infinitesimal generator of a strongly-continuuous semigroup of linear operators Tt on any Banach space B is defined by Af = ...
متن کاملSample Path Regularity for One-Dimensional Diffusion Processes
1. Basic Assumptions. Assume that (i) {Tt} is a strongly-continuous semigroup of bounded linear operators on the Banach space B = C0(I) = { f continuous on I = [0, 1] : f(0) = f(1) = 0 } (ii) If f(x) ≥ 0 and f ∈ B, then Ttf(x) ≥ 0 and Ttf(x) ≤ maxy∈I f(y). In general, the infinitesimal generator of a strongly-continuuous semigroup of linear operators Tt on any Banach space B is defined by Af = ...
متن کاملPitman-Yor Diffusion Trees
We introduce the Pitman Yor Diffusion Tree (PYDT) for hierarchical clustering, a generalization of the Dirichlet Diffusion Tree (Neal, 2001) which removes the restriction to binary branching structure. The generative process is described and shown to result in an exchangeable distribution over data points. We prove some theoretical properties of the model and then present two inference methods:...
متن کاملAsymptotically one-dimensional diffusion on the Sierpinski gasket and multi-type branching processes with varying environment
Asymptotically one-dimensional diffusions on the Sierpinski gasket constitute a one parameter family of processes with significantly different behaviour to the Brownian motion. Due to homogenization effects they behave globally like the Brownian motion, yet locally they have a preferred direction of motion. We calculate the spectral dimension for these processes and obtain short time heat kerne...
متن کاملApproximations of non-smooth integral type functionals of one dimensional diffusion processes∗
In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth functions of a one dimensional diffusion process. We propose the use the exact simulation scheme to simulate the process at discretization points. In particular, we also present the rates of convergence for the weak and strong error of approximation for the local time of a one dimensional diffusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1990
ISSN: 0387-3870
DOI: 10.3836/tjm/1270132272